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Motivation

Safety of deployed machine learning models is highly
important in many applications.
Data is costly to obtain in small sample settings such
as in engineering or medical applications.
Identify valid subdomains of input space with a
model error smaller than some required tolerance.

a) Background & Problem

Validate a model fM : X → Y over X ⊂ IRd

Expensive observations Yx = fE(x) + ε subject to
homoscedastic Gaussian noise ε
Validation Metric.

P (−ξ < fD(x) < ξ) ,

with tolerance ξ ∈ IR>0 and model discrepancy
fD(x) := fM(x)− Yx.
Reformulation: P (g(x) > 0) with limit state
function g(x) := ξ − |fD|

Definitions

Local Validity. A model fM is locally valid at x,
given a tolerance level ξ, if ξ − |δ(x)| ≥ 0. Then, the
valid region of fM is

V = {x ∈ X : ξ − |δ(x)| ≥ 0},

with noiseless discrepancy δ(x) = fM(x)− fE(x).
Limit State. The limit state of fM is given by

S = {x ∈ X : ξ − |δ(x)| = 0}.
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b) Gaussian Process (GP) Error Model

Use a Gaussian process (GP) to learn the limit state

ĝ = ξ − |f̃D| f̃D ∼ GP (µ, k) .

The prediction is a folded Gaussian posterior, available in closed-form.

c) Learning the Limit State with MC-Prob.

Bayesian Active Learning. A new query x∗ for evaluation is obtained as

x∗ = arg max
x∈C

ψmis(x),

with candidates C.
Acquisition Function. We use the misclassification probability (MC-Prob.) as
acquisition function

ψmis(x;ω) =

P
(
Ĝx ≤ −ω

)
, for |µy|D(x)| ≤ ξ

1− P
(
Ĝx ≤ ω

)
, for |µy|D(x)| > ξ,

with hyperparmeter ω ∈ IR+ to control the exploration-exploitation trade-off.

Experiments

Benchmark results
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Comparison with conformal prediction
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Conclusion

Novel formulation for local validation,
inspired by active learning reliability
Misclassification probability (MC-Prob)
based on epistemic uncertainty is used
Higher sample efficiency and thus
accuracy in limited sample settings
compared to previous work
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